WORLDTECH

ワールドテック 標準講座 一覧 (90講座) 【ベーシック/スタンダードコース】

	1. 設計力の向上	2. 品質力の向上	3.電気・電子、メカトロ	4. 材料技	術、加工技術	5. 各種技術·手法
(1)	新7つの「設計力」による 世界No.1製品づくり	『QC 七つ道具』と『新QC 七つ道具』	電気・電子回路の基礎	ゴム材料の知識と 選定・加工のポイント	(21) New 切削加工に於ける問題	技術ロードマップ
(2)	「設計力」こそがモノづくり競争力の原点	『SQC』入門	アナログ回路の基礎	樹脂材料の知識と 選定・加工のポイント	(22) New 技術者のための塑性加工技術	プロジェクトマネジメントの向上
(3)	設計品質不具合の未然防止切り札としての 「DRBFM」	『なぜなぜ分析』入門	New デジタル回路の基礎	樹脂材料「スーパーエンプラ」を知る	(23) レーザ加工技術とその応用	New アジャイルのモノ造りへの適用
(4)	間違いだらけの「デザインレビュー」	『自工程完結』(スタッフ業務の質向上)	パワーエレクトロニクスの基礎 New	樹脂成型の知識	(24) 初歩から学ぶ機械要素	プロジェクトの課題解決と マネジメントスキルアップ
(5)	設計図面に必要不可欠となっている 「幾何公差」を学ぶ	『実験計画法』入門	センサの基礎	金属材料の知識と 選定・加工のポイント	(25)実務に役立つ 「材料力学」の基礎と応用	New アジャイルによる開発力の向上
(6)	モノづくりにおける 「図面の見方・読み方」を学ぶ	『多変量解析』入門	モノづくりのための制御の基礎 New	鉄鋼材料の 「熱処理」及び「表面硬化」	(26) 振動工学の基礎	新しい価値を創造する イノベーション力
(7)	"FMEA辞書"の活用による FMEAとDRの効果的実施方法	仕事の進め方の基本となる 『QC ストーリー』	シーケンサ制御技術	金属疲労メカニズムと 疲労強度の向上技術	(27) New 水素取り扱いの基礎	エンジニアのための New 「シーズ起点型デザイン思考」
(8)	品質不良・エラーを防ぐための検図	『記書十FMEA』	電子機器(メカトロニクス)の基礎	金属疲労の基礎と New 疲労破壊の破面解析および対策		自動運転システムの安全設計と 安全性評価方法
(9)	製図法(日本語版と英語版)	製造工程の不具合未然防止 『工程FMEA』	モータ技術の基礎 New	事例で学ぶ 実践 "疲労強度" 設計		効率よく機能安全開発するためのノウハウ
(10)	New AIとIoT活用	故障原因究明の決め手 「FTA」入門	実務に役立つ現場のモータ技術 New (必須 6 項目)	金属材料の腐食防食に関する基礎知識		生産性の向上
(11)	事例で学ぶ New 実践 "信頼性" 設計	『信頼性工学』	現場で役立つ モータの振動騒音と対策法	金属製部品の破壊原因解析方法 New		"人を活かす" 製造現場づくりの実際
(12)	事例で学ぶ New 実践 "騒音対策" 設計	製品の目標値決めに不可欠な 『品質機能展開』入門	モータシステムに活かす New CAE 構造解析の基礎と応用	トライボロジー概論 (摩擦・摩耗・潤滑)		現場監督者のマインド醸成と 必要なスキル・役立つ取組み
(13)		不良品流出防止の決め手 『QA ネットワーク』	電子機器のEMC対応設計	接着技術(化学的接合)		自動車エンジンと制御部品
(14)		製品の良否判断・新発見に不可欠。 <mark>New</mark> 『評価力』	"カーエレクトロニクス用 電子部品・材料技術"の基礎講座	ねじ締付技術(機械的接合) New ~「ねじ締め」の勘所~		自動車の電動化/自動運転 /MaaSの最新動向
(15)		技術者に必須の "17の品質手法" を学ぶ 『品質力圧縮講座』	電子製品の品質保証の勘所	事例で学ぶ 実践 "ねじ締結" 設計		信頼性試験と故障解析
(16)		タグチメソッド(品質工学)	システム開発の勘所	溶接・ろう接技術 (冶金的接合)		競争力ある製品設計に欠かせない <mark>New</mark> VEとその活用(演習付)
(17)		品質マネジメントTQMを理解する	ソフトウェア品質向上テクニック New	溶接の基礎 〜実務に役立つ基礎知識を学ぶ〜		事例で学ぶ New 実践 "コスト低減" 設計
(18)				(18) 表面処理技術(表面処理の勘所)		
(19)				(19)シール技術 〜不具合事例に学ぶ夜漏れ・異物混入防 止のシール設計〜		
(20)				(20)熱処理技術 New ~材料の高品質·高信頼性確保~		

全90講座

当表に掲載の研修は、弊社の標準的な講座ですが、ご希望によりカスタマイズいたします。尚、当表にない講座もご用命を承ります。全講座ともWEB研修が可能です。

- 2025/7/14 現在 M II 会社ビジネス未来&Co。

ビジネス未来&Co. 提供講座 一覧 (47講座)

【トレンド技術&ノウハウ コース】

【アドバンス コース】

	A. 商品企画·開発	B. 電動車・パワートレイン	C. 電池	D. マネジメント	. 電池
(1)	トラックとは何か?	【シリーズ】電動パワートレイン基礎教育 ① 概要	リチウムイオン二次電池の使い方(電池から 電池PACKまで)	PLM/PDM概論	バッテリー セル概論
(2)	バスとは何か?	【シリーズ】電動パワートレイン基礎教育 ② モータの動作原理	【シリーズ】Liイオン電池システム基礎教育 ① EV/HEV概論	プロジェクトマネージャーの役割と心得	バッテリー パック概論
(3)		【シリーズ】電動パワートレイン基礎教育 ③ モータの構造と構成要素 (1)アクティブパーツ	【シリーズ】Liイオン電池システム基礎教育 ② 電池の基礎	新規事業における購買組織構築	バッテリー 技術トレンド及びバッテリーパックベ ンチマーク
(4)		[シリーズ]電動パワートレイン基礎教育 ④ モータの構造と構成要素 (2)構造、絶縁、周辺	【シリーズ】Liイオン電池システム基礎教育 ③ 性能検討	会議運営法	次世代電池
(5)		【シリーズ】電動パワートレイン基礎教育 ⑤ モータの設計	【シリーズ】Liイオン電池システム基礎教育 ④ 体格検討	プレゼンテーションの技術	バッテリー セル生産工程についてー電極
(6)		【シリーズ】電動パワートレイン基礎教育 ⑥ インバータの構造と機能	【シリーズ】Liイオン電池システム基礎教育 ⑤ システム検討	交渉力	バッテリー セル生産工程について-組立・化 成
(7)		【シリーズ】電動パワートレイン基礎教育 ⑦ インバータの構成部品	【シリーズ】Liイオン電池システム基礎教育 ⑥ 制御検討	部門の壁の突破法	バッテリー モジュール生産工程について
(8)		【シリーズ】電動パワートレイン基礎教育 ⑧ インバータの設計	【シリーズ】Liイオン電池システム基礎教育 ⑦ 輸送・リサイクル	新入社員のためのメンタルヘルス研修	バッテリー パック生産工程について
(9)		【シリーズ】電動パワートレイン基礎教育 ⑨ 評価・試験	【シリーズ】Liイオン電池システム基礎教育 ⑧ 信頼性	管理職のためのメンタルヘルス研修	バッテリー 品質管理について
(10)		【シリーズ】電動パワートレイン基礎教育 ⑩ 生産工程	【シリーズ】Liイオン電池システム基礎教育 ⑨ 試験・評価	社内コミュニケーション活性化研修	バッテリーパック 安全設計について
(11)		【シリーズ】電動パワートレイン基礎教育 ⑪ 電動パワートレインの動向 (1) 全般	【シリーズ】Liイオン電池システム基礎教育 ⑩ 工程検討	キャリアプランニング	
(12)		【シリーズ】電動パワートレイン基礎教育 ② 電動パワートレインの動向 (2) 要素技術	【シリーズ】Liイオン電池システム基礎教育 ⑪ 市場対応	1on1コミュニケーション	
(13)			【シリーズ】Liイオン電池システム基礎教育 ② コスト検討	ライフキャリアー妊活と仕事編ー	
(14)				不妊治療と仕事の両立支援	
(15)				課題解決スキル	